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Abstract Circulant pentadiagonal (CP) systems of linear equations arise in many
application areas and have been thoroughly studied in the past decades. In the current
paper, a novel algorithm is presented for solving CP linear systems based upon a
structure-preserving factorization for the coefficient matrix. Meanwhile, we show that
the proposed algorithm is competitive with some already existing algorithms in terms
of arithmetic operations. In addition, a symmetric case of the CP linear systems is also
considered. Finally, two examples are provided in order to demonstrate the validity
and efficiency of our algorithm and its competitiveness with other algorithms. All of
the numerical experiments are performed on a computer with the aid of programs
written in Matlab.
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1 Introduction

Complex mathematical models are frequently used in the modern computer age to
deal with many difficult problems which arise in several mathematical chemistry as
well as scientific and engineering investigations. During the last 40 or 50years, the
size of the mathematical models and the number of linear equations which have to be
handled after their discretization were greatly increased in these areas. For example,
the work with the mathematical model discussed in [1], which is used for investigating
the long-range transport of air pollutants in a large spatial domain containing thewhole
of Europe, was initiated in 1980. The gradually increased computational complexity
of this large-scale model during the period 1980–2014 (due to the computational grid-
points and to the numbers of involved chemical species) has been summarized in [2],
see Table 1.

From Table 1, we note that the number of the equations that are to be handled at
each time-step is dramatically increased from 2048 up to 389376000. Therefore, the
studies related to the development of novel and more efficient numerical (or sym-
bolic) algorithms as well as to the improvement of the already existing algorithms are
extremely important for researchers. However, the choice of a computational algo-
rithm for large-scale models is always a result of some compromise. The need of a
suitable compromise can be illustrated by the following two aspects:

(I) Applying divide and conquer (D & C) techniques may facilitate the choice of
algorithms, however, the accuracy of these techniques is normally low.

(II) Increasing the accuracy of the numerical solutions may lead to more time-
consuming algorithms.

In this paper, we mainly consider an n-by-n circulant pentadiagonal (CP) system
of linear equations defined by

Ax = f, (1.1)

Table 1 The increase of the computational complexity of an air pollution model in the period 1980–2014

No. Dimensionality Number of grid-point Chemical species Number of equations

1 2-D 32 × 32 2 2048

2 2-D 32 × 32 35 35,840

3 3-D 32 × 32 × 10 35 358,400

4 2-D 96 × 96 35 322,560

5 3-D 96 × 96 × 10 35 32,25,600

6 2-D 480 × 480 35 8064000

7 3-D 480 × 480 × 10 35 8,06,40,000

8 2-D 480 × 480 56 1,29,02,400

9 3-D 480 × 480 × 10 56 12,90,24,000

10 2-D 480 × 480 169 3,89,37,600

11 3-D 480 × 480 × 10 169 38,93,76,000
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where

A :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d a b e c
c d a b e
e c d a b

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . . b

b e c d a
a b e c d

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
n×n, (1.2)

x := [x1, x2, . . . , xn]T , f := [ f1, f2, . . . , fn]T are unknown and known vectors of
length n, respectively. Without loss of generality, we assume that be �= 0. This type
of system often appears in quintic spline problems, boundary value problems (BVPs),
fluidmechanics,Hückel theory, parallel computing, and numerical solution of ordinary
differential equations (ODEs), especially because the discretization of second-order
linear differential equations with periodic boundary conditions, transforming them
into finite-difference equations, often results in the CP linear systems, see [3–9]. Two
important examples of the second-order differential equations that frequently arise in
chemical engineering are Bessel’s equation

x2y′′ + xy′ +
(
x2 − n2

)
y = 0,

and the confluent hypergeometric equation

x
d2y

dx2
+ (c − x)

dy

dx
− ay = 0,

see [10] for details. Moreover, in paper [11], a sixth-order uniform mesh difference
scheme using sextic splines for solving a self-adjoint singularly perturbed two-point
boundary-value problem arising in the study of chemical reactor theory, of the form

{−εu′′ + p(x)u = f (x), p(x) > 0,
u(0) = α0, u(1) = α1,

is derived. And, the proposed scheme leads to a nearly pentadiagonal Toeplitz linear
systems which is a special case of the CP linear systems (1.1).

A standard solution of the CP linear systems can be obtained if we know the inverse
of the coefficient matrix A, which would reduce the original problem of computing
the solution for such systems to one of matrix multiplication, i.e. x = A−1f. However,
methods of implementing an algorithm to compute the solution by using the procedure
described above, are extremely inefficient for large-scale systems since the number of
required operations grows very fast. Therefore, more specific algorithms have been
devised for solving CP and pentadiagonal block circulant (PBC) linear systems in
recent years, see [12–20]. In addition, some authors have presented fast numerical
algorithms for periodic pentadiagonal Toeplitz (PPT) linear systems which are special
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case of our problem, see e.g. [21–24] and references therein. In this study, our main
objective is to construct a structure-preserving algorithm for solving system (1.1)
without imposing any restrictive conditions.

The remainder of this paper is organized as follows: in the next section, we show
that a reliable symbolic algorithm with less computation costs is derived from the
use of a structure-preserving matrix factorization and the circulant tridiagonal linear
solver described in our framework [25], that can be regarded as a generalization of the
algorithm given in [21]. In addition, we derive an algorithm for solving a symmetric
case of the CP linear systems, and give the feasibility and stability analysis of the
algorithm. In Sect. 3, the proposed algorithm is demonstrated by some simple numer-
ical experiments. Finally, we make some concluding remarks of the present study in
Sect. 4.

2 Main results

In this section, we will develop an efficient structure-preserving algorithm for the CP
linear systems as in (1.1). Before describing the detail, let us review two existing
algorithms (Jia, Kong and Sogabe’s algorithm [26] and Navon’s algorithm [27]), and
give the computational costs of these algorithms.

2.1 Existing algorithms for solving CP linear systems

Recently, in their paper [26], Jia, Kong and Sogabe presented a recursive algo-
rithm for solving CP linear systems in linear time. The algorithm is based on the
Sherman-Morrison-Woodbury formula [28] and a matrix factorization that represents
the coefficient matrix A as a sum of pentadiagonal matrix and rank-two matrix, thus

A = P +UV, (2.1)

where

P :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d − b a b
c − a d − b a b

e c d a
. . .

. . .
. . .

. . .
. . .

. . .

. . . c d a b
e c d − e a − c

e c d − e

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
n×n,

U := [u1,u2] =
[
1 0 · · · 0 1 0
0 1 0 · · · 0 1

]T

∈ R
n×2,
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and

V :=
[
v1
v2

]
=

[
b 0 · · · 0 e c
a b 0 · · · 0 e

]
∈ R

2×n .

It follows from the Sherman-Morrison-Woodbury formula that the matrix A is
invertible if and only if I2 + V P−1U is invertible, and

A−1 = P−1 − P−1U (I2 + V P−1U )−1V P−1. (2.2)

Here, I2 denotes the 2-by-2 identity matrix. On both sides of Eq. (2.2), multiply by f
on the right to obtain

x = y − [z,w]
[
m1 m2
m3 m4

]−1 [
by1 + eyn−1 + cyn
ay1 + by2 + eyn

]

= y − d1z − d2w,

where y = [y1, y2, . . . , yn]T , z = [z1, z2, . . . , zn]T , w = [w1, w2, . . . , wn]T are
solutions of the following linear systems with multiple right-hand sides

P[y|z|w] = [f|u1|u2], (2.3)

and

mi =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

bz1 + ezn−1 + czn + 1 if i = 1

bw1 + ewn−1 + cwn if i = 2

az1 + bz2 + ezn if i = 3

aw1 + bw2 + ewn + 1 if i = 4,

(2.4)

di =

⎧⎪⎪⎨
⎪⎪⎩

(bm4 − am2)y1 + (cm4 − em2)yn + em4yn−1 − bm2y2
m1m4 − m2m3

if i = 1

(am1 − bm3)y1 + (em1 − cm3)yn − em3yn−1 + bm1y2
m1m4 − m2m3

if i = 2.

(2.5)

The resulting algorithm can be summarized as follows:

Algorithm 2.1 Jia, Kong and Sogabe’s algorithm [26]
Step 1 Input P , U , V , f and order n.
Step 2 Solve linear systems (2.3) by using the pentadiagonal linear solver given in
[26, p. 1240].
Step 3 Compute m1, m2, m3 and m4 by using (2.4).
Step 4 Compute d1 and d2 by using (2.5).
Step 5 Output the solution of system: x = y − d1z − d2w.

123



1622 J Math Chem (2015) 53:1617–1633

If we measure the computational costs of the above algorithm in terms of total
number of operations, where each operation represents one of the four arithmetic
floating point operations, then Jia, Kong and Sogabe’s algorithm requires 48n − 24
operations for solving the CP linear system (1.1). For the validity of Algorithm 2.1,
the conditions are that P is invertible and m1m4 − m2m3 �= 0.

Since the difference between the pentadiagonal matrix and the circulant pentadiag-
onal matrix is only the (1, n − 1), (1, n), (2, n), (n − 1, 1), (n, 1) and (n, 2) entries,
i.e., an n-by-n circulant pentadiagonal matrix A = [ai j ] with a1,n−1 = a1,n = a2,n =
an−1,1 = an,1 = an,2 = 0 reduces to a pentadiagonal Toeplitz matrix, Navon pro-
posed an approach for solving CP linear systems based on the use of pentadiagonal
linear solvers, see [27]. In this approach, the original coefficient matrix A is split into
the following 2-by-2 block matrix form

A =
[
P̂ Û
V̂ D

]
∈ R

n×n, (2.6)

where

Û := [û1, û2] =
[
e 0 · · · 0 b a
c e 0 · · · 0 b

]T

∈ R
(n−2)×2,

V̂ :=
[
v̂1
v̂2

]
=

[
b 0 · · · 0 e c
a b 0 · · · 0 e

]
∈ R

2×(n−2),

D :=
[
d a
c d

]
∈ R

2×2,

and P̂ is the (n − 2)-th leading principal submatrix of A. Remarkably, the matrix P̂
inherits some nice properties from the matrix A as shown below.

Proposition 2.1 Let A be an n-by-n circulant pentadiagonal matrix and P̂ its (n−2)-
th leading principal submatrix. Then we have

1. If A is symmetric positive definite, then P̂ is symmetric positive definite;
2. If A is symmetric negative definite, then P̂ is symmetric negative definite and
(−1)n−2det(P̂) > 0;
3. If A is totally positive (nonnegative) matrix, then P̂ is totally positive (nonneg-
ative) matrix;
4. If A is row (column) diagonally dominant, then P̂ is row (column) diagonally
dominant.

Proof Since P̂ is the (n − 2)-th leading principal submatrix of A, we readily obtain
the above properties by using the corresponding results given in [28]. ��

Based on the partition given in (2.6), the original CP linear system (1.1) can be
rewritten as

[
P̂ Û
V̂ D

] [
x̂
x̃

]
=

[
f̂
f̃

]
, (2.7)
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where

x̂ := [x1, x2, . . . , xn−2]T ∈ R
(n−2)×1, x̃ := [xn−1, xn]T ∈ R

2×1,

and

f̂ := [ f1, f2, . . . , fn−2]T ∈ R
(n−2)×1, f̃ := [ fn−1, fn]T ∈ R

2×1.

Thus, we have

{
P̂ x̂ + Û x̃ = f̂,
V̂ x̂ + Dx̃ = f̃ .

(2.8)

From the first equation of (2.8), we can deduce that

x̂ = P̂−1 f̂ − P̂−1Û x̃. (2.9)

And, if we substitute (2.9) into the second equation of (2.8), it yields

V̂ P̂−1 f̂ − V̂ P̂−1Û x̃ + Dx̃ = f̃,

thus (
D − V̂ P̂−1Û

)
x̃ = f̃ − V̂ P̂−1 f̂

which permits us to obtain the two components of the unknown vector x̃ explicitly as

x̃ =
(
D − V̂ P̂−1Û

)−1 (
f̃ − V̂ P̂−1 f̂

)
. (2.10)

Let ŵ = [ŵ1, ŵ2, . . . , ŵn−2]T , ŷ = [ŷ1, ŷ2, . . . , ŷn−2]T , ẑ = [ẑ1, ẑ2, . . . , ẑn−2]T
are solutions of the systems

P̂ŵ = û1, P̂ ŷ = û2, P̂ ẑ = f̂, (2.11)

respectively. Then, we have

x̃ = D̂−1 f̄, (2.12)

where

D̂ =
[
d − bŵ1 − eŵn−3 − cŵn−2 a − bŷ1 − eŷn−3 − cŷn−2
c − aŵ1 − bŵ2 − eŵn−2 d − a ŷ1 − bŷ2 − eŷn−2

]
,

and

f̄ =
[
fn−1 − bẑ1 − eẑn−3 − cẑn−2
fn − aẑ1 − bẑ2 − eẑn−2

]
.
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Finally, the sought values of x̂ can be calculated by using (2.9). The corresponding
algorithm is given below.

Algorithm 2.2 Navon’s algorithm [27]

Step 1 Input P̂ , Û , V̂ , D, f̂, f̃ and n.
Step 2 Based on the LU factorization of matrix P̂ , solve equations (2.11) by using
forward substitution and back substitution.
Step 3 Compute x̃ = [xn−1, xn]T by using (2.12).
Step 4 Compute x̂ = [x1, x2, . . . , xn−2]T by using (2.9).

Step 5 Output the solution of system: x =
[
x̂
x̃

]
.

From the above we can see that it is important to solve three (n−2)-by-(n−2) pen-
tadiagonal Toeplitz linear systems P̂ŵ = û1, P̂ ŷ = û2 and P̂ ẑ = f̂ in the algorithm.
Therefore, for validity of the algorithm, the condition is that the matrix P̂ is invertible.
Moreover, we note that the computational costs of Algorithm 2.2 is 41n − 29 and this
leads to the result that Algorithm 2.2 is about 15% faster than Algorithm 2.1 when
the system order n is large enough.

2.2 A structure-preserving algorithm based on circulant tridiagonal linear
solvers

In this section, we focus on the construction of a novel computational algorithm for
solving CP linear systems. First, let us define two circulant tridiagonal matrices as
follows

T1 :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

s 1 e
p

e
p s 1

e
p

. . .
. . .

. . .
. . . 1

1 e
p s

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
n×n, T2 :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

t b
p 1

1 t b
p

1
. . .

. . .

. . .
. . . b

p
b
p 1 t

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
n×n,

where the parameters p, s and t satisfy the following nonlinear equations

⎧⎨
⎩
et + sp − c = 0,
bs + tp − a = 0,
(st + 1)p2 − dp + be = 0.

(2.13)

Then, we can readily confirm that A = pT1T2 where A is the circulant pentadiag-
onal matrix defined in (1.2). This is a structure-preserving factorization of the matrix
A. Consequently, solving the linear system Ax = f can be achieved by solutions of
two circulant tridiagonal (CT) linear systems

T1y = f
p
, T2x = y. (2.14)
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It follows from (2.13) that in order to calculate p, s, and t , we should solve the following
sextic equation at first:

p6 − dp5 + (ac − be)p4 +
(
2bde − a2e − c2b

)
p3

+
(
abce − b2e2

)
p2 − b2e2dp + b3e3 = 0. (2.15)

Proposition 2.2 If we set α = d
3 , β = d2+12be−3ac

9 , γ = 3a2e+3c2b−8bde−acd
6 and

η = 3
√

α3 + γ + √
(α3 + γ )2 − β3, then the analytic solutions of Eq. (2.15) can be

given as

p2i−1 =
λi +

√
λ2i − 4ae

2
and p2i =

λi −
√

λ2i − 4ae

2
, i = 1, 2, 3,

where

λ1 = α + η + β

η
,

λ2 = α − η

2
− β

2η
+ i

√
3

2

(
η − β

η

)
,

λ3 = α − η

2
− β

2η
− i

√
3

2

(
η − β

η

)
.

Proof In order to calculate the analytic solutions, we first divide the both sides of
Eq. (2.15) by p3, and define λ = p + be

p . Then, Eq. (2.15) can be reformulated
as

λ3 − dλ2 − (4be − ac)λ + 4bde − c2b − a2e = 0.

Here, we use the Cardano’s method to solve the above cubic equation, then we have

λ1 = α + 3

√
α3 + γ +

√(
α3 + γ

)2 − β3 + 3

√
α3 + γ −

√(
α3 + γ

)2 − β3

λ2 = α − 1 − √
3i

2

3

√
α3 + γ +

√(
α3 + γ

)2 − β3

−1 + √
3i

2

3

√
α3 + γ −

√(
α3 + γ

)2 − β3

λ3 = α − 1 + √
3i

2

3

√
α3 + γ +

√(
α3 + γ

)2 − β3

−1 − √
3i

2

3

√
α3 + γ −

√(
α3 + γ

)2 − β3
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where α, β, γ are defined above. Finally, the solutions of Eq. (2.15) can be calculated
and simplified to the following form

p1,2 =
λ1 ±

√
λ21 − 4be

2
, p3,4 =

λ2 ±
√

λ22 − 4be

2
, p5,6 =

λ3 ±
√

λ23 − 4be

2
.

That completes the proof. ��
Throughout this paper, we pre-assume that the sextic equation (2.15) has real roots

with a, b, c, d, e. Then, after determining p, we can compute s and t by using Eq.
(2.13). In particular, if p2 − be �= 0, it follows from the first two equations of Eq.
(2.13) that we have

s = cp − ae

p2 − be
, t = ap − bc

p2 − be
. (2.16)

The resulting algorithm can be summarized as follows:

Algorithm 2.3
Step 1 Input A, f and order n.
Step 2 Compute the circulant tridiagonal matrices T1 and T2 by using Proposition 2.2
and Eq. (2.13).
Step 3 Solve systems T1y = f

p and T2x = y by using any circulant tridiagonal linear
solver.
Step 4 Output the solution of system: x = [x1, x2, . . . , xn]T .

Remark 2.1 It should bementioned that even if a complex root of Eq. (2.15) is chosen.
Algorithm 2.3 will produce the solution of system (1.1) by permitting complex oper-
ations. Thus, the algorithm actually works without the pre-assumption that Eq. (2.15)
has real roots. Such pre-assumption, however, will be required, if all computation are
required to be done in real number.

2.3 A symbolic algorithm for solving periodic tridiagonal linear systems

From the previous subsection, we note that using a reliable circulant tridiagonal linear
solver makes our algorithm (Algorithm 2.3) robust. Therefore, an efficient algorithm
will be described for solving circulant tridiagonal (CT) linear systems in this subsec-
tion.

Without imposing any restrictive conditions, in their paper [25], Jia and Kong have
developed a symbolic algorithm (SPT algorithm) for periodic tridiagonal systems of
equations

T x = f, (2.17)

where T is a periodic tridiagonal matrix of the form

123



J Math Chem (2015) 53:1617–1633 1627

T :=

⎡
⎢⎢⎢⎢⎢⎣

b1 c1 a1
a2 b2 c2

. . .
. . .

. . .

an−1 bn−1 cn−1
cn an bn

⎤
⎥⎥⎥⎥⎥⎦

∈ R
n×n .

The algorithm is based on the LMU matrix factorization that represents the coef-
ficient matrix T as a product of three matrices, i.e., T = LMU, where L is lower
bidiagonal matrix, M is nearly upper unitriangular matrix, andU is upper unitriangu-
lar matrix, for details, see [25, p. 2226]. Finally, solving T x = f can be achieved by
solutions of three linear systems Lz = f, My = z, and Ux = y. The corresponding
algorithm is given below.

Algorithm 2.4 SPT algorithm [25]
Step 1 Input ai , bi , ci , fi and n.
Step 2 LMU factorization stage:

Set d1 = b1, If d1 = 0 then d1 = τ end if. Set e1 = c1
d1
, g′

1 = a1
d1
,

For i = 2, 3, . . . , n − 1 compute and simplify
di = bi − ei−1ai , If di = 0 then di = τ end if.

ei = ci
di
, g′

i = − ai g′
i−1
di

,
End.

Set g′
n−1 = cn−1−an−1g′

n−2
dn−1

, gn−1 = g′
n−1,

For i = n − 2, n − 3, . . . , 1 compute and simplify
gi = g′

i − ei gi+1,
End.

Set dn = bn − cng1 − angn−1, If dn = 0 then dn = τ end if.
Step 3 Solution stage:

Set z1 = f1
d1
,

For i = 2, 3, . . . , n compute and simplify
zi = fi−ai zi−1

di
,

End.
Set yn−1 = zn−1,

For i = n − 2, n − 3, . . . , 1 compute and simplify
yi = zi − ei yi+1,

End.
Set gn = cn

dn
, xn = zn − gn y1,

For i = n − 1, n − 2, . . . , 1 compute and simplify
xi = yi − gi xn,

End

Since the LMU factorization depends on a formal parameter τ which can be
regarded as a symbolic name whose actual value is 0, such factorization always exists
even if the coefficient matrix T is singular, and this leads to the reliable solution of
the periodic tridiagonal linear system (2.17).

On the other hand, we note that the SPT algorithm can be directly applied to the
CT linear systems T1y = f

p and T2x = y given in (2.14), by setting ai = e
p , bi = s,

123



1628 J Math Chem (2015) 53:1617–1633

ci = 1 and ai = 1, bi = t , ci = b
p , respectively. We now state a symbolic algorithm

for CP linear systems below.

Algorithm 2.5 Symbolic algorithm for Ax = f
Step 1 Input a, b, c, d, e, n and f.
Step 2 Solve Eq. (2.15) by using Proposition 2.2, and choose a root p.
Step 3 Compute s and t by using Eq. (2.13).
Step 4 Solve systems T1y = f

p and T2x = y by using Algorithm 2.4.
Step 5 Evaluate y and x with τ = 0.
Step 6 Output the solution of system: x = [x1, x2, . . . , xn]T .

The above algorithmwill be referred to as theSCPalgorithm. Ingeneral, it is difficult
to know the total costs a prioriwhen complexnumbers and symbolic names arise during
the computation. Therefore, we only count operations under the assumption that Eq.
(2.13) has real solutions. In this case, the computational costs for Algorithm 2.5 are
29n + 94, since costs for the steps 2, 3, and 4 are 109, 11, and 29n − 26, respectively.
For convenience, we assume that the square (or cube) root evaluation is of the same
complexity as the other basic arithmetical operations.

Below, we compare the computational costs among Jia, Kong and Sogabe’s
algorithm (Algorithm 2.1), Navon’s algorithm (Algorithm 2.2) and our algorithm
(Algorithm 2.5) in Table 2.

Comparing the results given in Table 2, we can see that our algorithm reduces the
computational costs by using less number of arithmetic operations.

2.4 A symmetric case

In this section, we consider a symmetric case of the CP linear system Ax = f, where

A :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d a 1 1 a
a d a 1 1
1 a d a 1

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . . 1

1 1 a d a
a 1 1 a d

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
n×n, (2.18)

and matrix A is strictly diagonally dominant.

Table 2 Total operations for solving the circulant pentadiagonal Toeplitz linear systems under the assump-
tion that Eq. (2.13) has real solutions and the symbolic name τ does not emerge

Algorithm 2.1 [26] Algorithm 2.2 [27] Our algorithm

Operations 48n − 24 41n − 29 29n + 94
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As a generalization of the symmetric pentadiagonal Toeplitz (SPT) linear systems
[29,30], symmetric circulant pentadiagonal (SCP) linear systems often appear inmany
applications. For details, the interested reader may refer to paper [31] and the refer-
ences therein.

From the results given in Sect. 2.2, we note that the SCP matrix A as in (2.18) can
be factorized into a product of two n-by-n symmetric circulant tridiagonal matrices,
i.e., A = T1T2, where

T1 :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

s 1 1
1 s 1

1
. . .

. . .

. . .
. . . 1

1 1 s

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, T2 :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

t 1 1
1 t 1

1
. . .

. . .

. . .
. . . 1

1 1 t

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

And, the parameters s and t satisfy the following equations
{
s + t = a,

st + 2 = d.

It is easy to deduce that

s1,2 = a ± √
a2 − 4d + 8

2
, t1,2 = a ∓ √

a2 − 4d + 8

2
.

Below, we state an algorithm for solving the SCP linear system.

Algorithm 2.6
Step 1 Input a, d, n and f.

Step 2 Compute s = a+sign(a)
√
a2−4d+8

2 , t = a−sign(a)
√
a2−4d+8

2 .
Step 3 Solve systems T1y = f and T2x = y by using Algorithm 2.4 (or any circulant
tridiagonal linear solver).
Step 4 Evaluate x with τ = 0.
Step 5 Output the solution of system: x = [x1, x2, . . . , xn]T .

The following proposition shows that under certain assumptions the above algo-
rithm is feasible and stable.

Proposition 2.3 Let the scalar a and b be such that

|d| > 2|a| + 2, (2.19)

and

a2 − 4d + 8 > 0, (2.20)
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then

|s1,2| = |a ± √
a2 − 4d + 8|
2

> 2.

Proof Case (i) d < 0.
From Eq.(2.19), we get a2 − 4d + 8 > |a|2 + 8|a| + 16 = (|a| + 4)2.
Therefore,

√
a2 − 4d + 8 > |a| + 4.

Subcase (i) a > 0.

Since a + |a| = 2a > 0, we get s1 = a+√
a2−4d+8
2 >

a+(|a|+4)
2 > 2.

Since a − |a| = 0, we get s2 = a−√
a2−4d+8
2 <

a−(|a|+4)
2 = −2.

Subcase (ii) a < 0.

Since a + |a| = 0, we get s1 = a+√
a2−4d+8
2 >

a+(|a|+4)
2 = 2.

Since a − |a| = 2a < 0, we get s2 = a−√
a2−4d+8
2 <

a−(|a|+4)
2 < −2.

Case (ii) d > 0.
Using conditions (2.19) and (2.20), we get 2|a| + 2 < d < a2+8

4 .
Therefore, |a| > 8. Thus a2 − 4d + 8 < |a|2 − 8|a| < (|a| − 4)2. This
means that

√
a2 − 4d + 8 < |(|a| − 4)| = |a| − 4.

Subcase (i) a > 0.

s2 = a−√
a2−4d+8
2 >

a−(|a|−4)
2 = 2, since s1 > s2, we get s1 > 2.

Subcase (ii) a < 0.

s1 = a+√
a2−4d+8
2 <

a+(|a|−4)
2 = −2, since s2 < s1, we get s2 < −2.

Thus by combining all cases, we have |s1,2| > 2. ��

The feasibility and stability of Algorithm 2.6 depends on the third step that solving
the circulant tridiagonal Toeplitz linear systems T1y = f and T2x = y. Since the
coefficient matrix A in (2.18) is strictly diagonally dominant, we have |d| > 2|a| + 2.
With the restriction that a2 − 4d + 8 > 0, it follows from Proposition 2.3 that we
can obtain |s| > 2 and |t | > 2, i.e., matrices T1 and T2 are both strictly diagonally
dominant. This property guarantees the numerical stability of the process of solving
T1y = f and T2x = y, see [32].

3 Numerical experiments

In this section, we present some numerical results to demonstrate the performance
and effectiveness of the proposed algorithm. Meanwhile, we compare our algorithm
(Algorithm 2.5) with Jia, Kong and Sogeba’s algorithm [26], Navon’s algorithm [27],
and also with Matlab back-slash operator. All numerical experiments were performed
in MATLAB 7 environment (using double precision arithmetic) and run on a HP
Compaq 6280 Pro Microtower PC with Inter (R) Core (TM) i5-2400 processor.

Example 3.1 In this example, we consider an n-by-n nonsymmetric CP linear system
Ax = f given by
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Table 3 Numerical results of Example 3.1

Algorithms n 2500 5000 7500 10,000

Algorithm 2.1 ‖x − x̂‖2 1.0886e−014 1.5549e−014 1.9106e−014 2.2097e−014

CPU time (s) 0.0933 0.1254 0.1672 0.2186

Algorithm 2.2 ‖x − x̂‖2 1.0908e−014 1.5565e−014 1.9118e−014 2.2108e−014

CPU time (s) 0.0294 0.0610 0.1075 0.1539

Back-slash (\) ‖x − x̂‖2 6.2705e−015 8.8198e−015 1.0785e−014 1.2445e−014

CPU time (s) 0.0323 0.0589 0.0961 0.1318

Our algorithm ‖x − x̂‖2 5.5942e−015 7.8810e−015 9.6398e−015 1.1124e−014

CPU time (s) 0.0155 0.0467 0.0623 0.0780

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 −2 −2 0.5 3

3 4 −2 −2 0.5

0.5 3 4 −2 −2

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . . −2

−2 0.5 3 4 −2

−2 −2 0.5 3 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1
x2
x3
...

...

xn−1

xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3.5

3.5

3.5
...

...

3.5

3.5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

It can be readily verified that x̂ = [1, 1, . . . , 1]T is the exact solution of the above
system. Below, the results (absolute errors ‖x − x̂‖2 and CPU times) with Algorithm
2.1, Algorithm 2.2, Algorithm 2.5 (with p = 1), and Matlab back-slash operator are
shown in Table 3.

We can see from Table 3 that our algorithm slightly outperforms other algorithms
for every dimension n. In the next example, another CP linear systemwhich originates
from an ordinary differential equation subject to periodic boundary conditions will be
used to further illustrate the competitiveness of our algorithm.

Example 3.2 Consider the following linear ordinary differential equation

f ′′(x) + f (x) =
(
1 − 4π2

)
sin(2πx), x ∈ [0, 1].

Subject to periodic boundary conditions

f (0) = f (1), f ′(0) = f ′(1),

where h = Δx is the mesh width and h = 1
n . It is easy to see that the exact solution

of the above equation is

f (x) = sin(2πx).
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Table 4 Numerical results of Example 3.2

Algorithms n 1000 2500 5000 10,000

Algorithm 2.1 ‖x − x̃‖2 7.6887e−010 4.4635e−009 1.0199e−008 2.6550e−008

CPU time (s) 0.0622 0.2035 0.3143 0.4856

Algorithm 2.2 ‖x − x̃‖2 7.7053e−010 4.4711e−009 1.0067e−008 2.6624e−008

CPU time (s) 0.0320 0.0671 0.1090 0.1872

Back-slash (\) ‖x − x̃‖2 4.8784e−010 9.2087e−010 1.8717e−009 1.1550e−008

CPU time (s) 0.0324 0.0665 0.1019 0.1538

Our algorithm ‖x − x̃‖2 2.1258e−010 4.6566e−010 9.9774e−010 1.8397e−009

CPU time (s) 0.0261 0.0577 0.0873 0.1224

If we use a fourth order finite difference to approximate the second derivative, i.e.,

f ′′(x) ≈ 1

12h2
(− f (x − 2h) + 16 f (x − h) − 30 f (x) + 16 f (x + h) − f (x + 2h)),

then the original ordinary equation can be discretized as the following n-by-n CP
linear system

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d a b b a
a d a b b
b a d a b

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . . b

b b a d a
a b b a d

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1
x2
...
...

xn−2
xn−1
xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f1
f2
...
...

fn−2
fn−1
fn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where d = −30 + 12h2, a = 16, b = −1, and fi = 12h2(1 − 4π2) sin(2π(i − 1)h)

for i = 1, 2, . . . , n. Here, we also use Algorithm 2.1, Algorithm 2.2, Algorithm 2.5,
and Matlab back-slash operator to compute the solution x. The errors ‖x − x̃‖2 (x̃ =
[x̃1, x̃2, · · · , x̃n]T , x̃i = sin(2π(i − 1)h)) and the mean value of CPU times (after
100 tests) are shown in Table 4.

Similar to the results shown in Example 3.1, our algorithm slight outperforms other
existing algorithms for every dimension.

4 Concluding remarks

In this paper, we mainly considered the solution of an n-by-n circulant pentadiagonal
Toeplitz linear system (1.1). First, two existing algorithms for solving CP linear sys-
tems were reviewed. Then, we developed a symbolic algorithm (Algorithm 2.5) for
robust computation which is based on factoring the coefficient matrix into the product
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of two circulant tridiagonal Toeplitz matrices. Also, we showed that the computational
costs of our proposed algorithm is much less than those of other existing algorithms,
i.e. Jia, Kong and Sogabe’s algorithm [26] and Navon’s algorithm [27]. Moreover,
a symmetric case of the CP linear systems was considered. Finally, some numerical
examples were given in order to demonstrate the performance and efficiency of our
algorithm.

Acknowledgments The authors would like to thank the anonymous referees whose comments substan-
tially enhanced the quality of the paper.
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